
THE FULLEST STACK
RUNNING RUST APPLICATIONS ABSOLUTELY EVERYWHERE
- ON EMBEDDED, SERVERS, AND THE BROWSER

NOW WITH 150%
LESS CRYPTO

CURRENCY

NEW TALK, WHO DIS?

ANATOL ULRICH, FREELANCE DEV - "RUST MAKES ME SLEEP AT NIGHT"

https://anatol.versteht.es/

spookyvision

pandora9001

@dngrs@chaos.social

+

https://anatol.versteht.es

BUT

BEFORE WE CONTINUE

▸ a few words from today's sponsor

VPN MARKETING MASSIVELY OVERPROMISES

THIS TALK BROUGHT TO YOU BY AD
BREAK!

AD
BREAK!

continue with essential cookies only

A BIG THANKS TO, OR

"IN COLLABORATION WITH"

▸ James Munns!

▸ not a sponsor!

▸ https://onevariable.com/

▸ find both of us in the #rust-embedded matrix room

https://onevariable.com/

BUT WHO ARE YOU?

▸ let's get to know my audience

▸ I'll adapt based on your responses

FINALLY, A

TABLE OF CONTENTS

▸ what makes Rust the fullest stackest languagest

▸ what browsers have to do with it

▸ demo time!

▸ explain the inner workings

▸ outlook/nerdsnipe/more demos

▸ Q&A

THE JOKES WRITE THEMSELVES WHEN ALL YOU HAVE IS A STACK (BECAUSE YOUR CRATE IS NO_ALLOC)

STACK? PLATFORM? MICROSERVICE? BROKER? RUNTIME?

▸ Rust excels at cross compilation

▸ modern language with types that just work, everywhere*

▸ "write once, run compile anywhere"

▸ don't build a runtime when you can use an existing one

▸ heterogeneous applications need to communicate

POSTCARD, A (VERY) QUICK TOUR

▸ Fast, space efficient and embedded friendly data format

▸ mostly Rust-only

IS IT STILL CLICKBAIT IF I POINT IT OUT AND ALSO THIS ISN'T EVEN A TIKTOK VIDEO

HOWTO COMPLEX APPLICATION IN ONE (1) SLIDE

▸ Define one single data model as source of truth

▸ impls are fine too! (can feature gate based on availability of std)

▸ Never convert or special case anything unless you absolutely have to

▸ Store state serde-friendly or in a database when that makes more sense

▸ Now just™ add a (G)UI! In Rust!

▸ Consider browsers for that

AAND ACTION

DEMO TIME!

▸ so you bought a board on AliExpress

▸ or designed one yourself

▸ now what?

HOW DOES THIS WORK?

▸ UI: dioxus & plotters-rs

▸ communication: postcard-rpc

▸ connectivity: WebUSB

WHAT'S NOT TO LIKE?

▸ this sounds like a lot of code

▸ what can we do about it?

LET'S GET RID OF CODE

▸ don't repeat yourself: write UI elements once and

▸ we can use postcard's experimental-derive feature for type introspection

▸ postcard-rpc is typed though:
pub async fn send_resp<E: Endpoint>(
 &self,
 t: &E::Request,
) -> Result<E::Response, HostErr<WireErr>>
where
 E::Request: Serialize + Schema,
 E::Response: DeserializeOwned + Schema,

LET'S GET RID OF CODE FOR GOOD

▸ postcard-dyn to the rescue

▸ leverages serde-json's dynamic Value type

▸ add dynamic call in postcard-rpc:

▸ sprinkle UI hints on top

pub async fn send_resp_dyn(
 &self,
 req_schema: &'static NamedType,
 req_key: Key,
 resp_schema: &'static NamedType,
 resp_key: Key,
 payload: &serde_json::Value,
)

MORE DEMO: LET'S TALK BACKEND

▸ you have some gadget deployed all over the world

▸ despite your best efforts, crash reports start rolling in

▸ nothing makes any sense? let's visualize!

REDUCE YOUR DATABASE LOAD BY OVER 9000% WITH THIS ONE WEIRD TRICK

▸ client-server apps are not always the best interactive experience

▸ you could add caching, but then you have two problems

▸ what else could we do?

EVEN MORE DEMO: DSP, LOGGING

▸ how about viewing some live FFT data?

▸ std-style logging is a papercut in embedded Rust

▸ defmt to the rescue! But typically requires a probe and the firmware

▸ log to a browser, or a central database, the sky is the limit

EVEN MORER DEMOER: HOW ABOUT AN ENTIRE OS

▸ and it's oops all async

WRAPPING UP

▸ some things are not quite great yet

▸ did I get you excited?

▸ check out Bret Victor's Kill Math and Stop drawing dead fish

WHAT ARE YOUR
QUESTIONS?

THE END

